Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species.
نویسندگان
چکیده
Most known plant disease-resistance genes (R genes) include in their encoded products domains such as a nucleotide-binding site (NBS) or leucine-rich repeats (LRRs). Sequences with unknown function, but encoding these conserved domains, have been defined as resistance gene analogues (RGAs). The conserved motifs within plant NBS domains make it possible to use degenerate primers and PCR to isolate RGAs. We used degenerate primers deduced from conserved motifs in the NBS domain of NBS-LRR resistance proteins to amplify genomic sequences from Lens species. Fragments from approximately 500-850 bp were obtained. The nucleotide sequence analysis of these fragments revealed 32 different RGA sequences in Lens species with a high similarity (up to 91%) to RGAs from other plants. The predicted amino acid sequences showed that lentil sequences contain all the conserved motifs (P-loop, kinase-2, kinase-3a, GLPL, and MHD) present in the majority of other known plant NBS-LRR resistance genes. Phylogenetic analyses grouped the Lens NBS sequences with the Toll and interleukin-1 receptor (TIR) subclass of NBS-LRR genes, as well as with RGA sequences isolated from other legume species. Using inverse PCR on one putative RGA of lentil, we were able to amplify the flanking regions of this sequence, which contained features found in R proteins.
منابع مشابه
Study of new NBS-LRR genes analogues in cucurbits native types in Iran
Nucleotide binding site leucine-rich repeats (NBS-LRR) accounting for the main disease resistance proteins play an important role in plant defense against pathogen attack. The current study aimed to identify new NBS-LRR gene members in native types of cucurbit species in Iran. Accordingly, DNAs of melon, cucumber and cantaloupe native types to Iran were identified using three primer pairs. PCR ...
متن کاملIdentification and characterization of a NBS–LRR class resistance gene analog in Pistacia atlantica subsp. Kurdica
P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran. The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) gene...
متن کاملLarge-scale analysis of NBS domain-encoding resistance gene analogs in Triticeae
Proteins containing nucleotide binding sites (NBS) encoded by plant resistance genes play an important role in the response of plants to a wide array of pathogens. In this paper, an in silico search was conducted in order to identify and characterize members of NBS-encoding gene family in the tribe of Triticeae. A final dataset of 199 sequences was obtained by four search methods. Motif analysi...
متن کاملIsolation and characterization of NBS–LRR resistance gene analogues from mango
The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family is a class of R genes in plants. NBS genes play a very important role in disease defence. To further study the variation and homology of mango NBS-LRR genes, 16 resistance gene analogues (RGAs) (GenBank accession number HM446507-22) were isolated from the polymerase chain reaction fragments and sequenced by using two degene...
متن کاملComparative analysis of NBS domain sequences of NBS-LRR disease resistance genes from sunflower, lettuce, and chicory.
Plant resistance to many types of pathogens and pests can be achieved by the presence of disease resistance (R) genes. The nucleotide binding site-leucine rich repeat (NBS-LRR) class of R-genes is the most commonly isolated class of R-genes and makes up a super-family, which is often arranged in the genome as large multi-gene clusters. The NBS domain of these genes can be targeted by polymerase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome
دوره 47 4 شماره
صفحات -
تاریخ انتشار 2004